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Abstract

Successful management strategies are important for conserva-

tion and allow accurate surveying and monitoring of populations

for presence, abundance, and trend. This becomes challenging

for cryptic, low‐density species, and for animals that have

complicated life histories where not every stage of the life cycle

can be surveyed effectively. We used information from animal‐

borne data loggers to characterize the dive‐surfacing behavior

of cryptic loggerhead turtles (Caretta caretta) in the northwest

Atlantic from 2009–2018. Our data covered a large geographic

area off the east coast of North America, and allowed us to

present estimates for and variation in 3 metrics that can be used

to assess availability bias affecting visual surveys: average dive

duration, average surface duration, and the proportion of time at

the surface. We used a stochastic partial differential equation

approach to construct spatiotemporal regression models for the

availability bias metrics. Model predictions showed pronounced

individual, spatial, and spatiotemporal (seasonal) variation

among the 245 turtles. Overall, we estimated an average dive

duration of 14.5 ± 1.36minutes (SE), an average surface dura-

tion of 15.1 ± 2.77minutes, and an average proportion of time

at the surface of 0.50 (95% CI = 0.41–0.59). We made predic-

tions of the 3 availability bias metrics on a 20‐km× 20‐km grid

and further used predictions to explore seasonal variations. Our

results contribute new insights into loggerhead turtle behavior
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and provide information that enables survey counts to be

translated into more accurate abundance estimates.
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When animals are cryptic or elusive, it dramatically complicates conservation efforts. The difficulty associated with

studying cryptic species often leaves their underlying distribution, abundance, and behavior unknown. Animals that

are difficult to see are vulnerable to unintentional harm from a variety of anthropogenic activities (Howell et al.

2008, Crum et al. 2019, National Oceanic and Atmospheric Administration [NOAA] 2020), and mitigation measures

such as conservation engineering solutions or time area conservation measures can be complicated to implement

with so much uncertainty associated with behavior and distribution (Shumway 1999). Effectively monitoring cryptic

and elusive populations is difficult and resource intensive (McNew and Handel 2015), particularly when accurate

abundance information is needed.

For cryptic and elusive wildlife, animal‐borne data loggers (biologgers) are often used to augment field surveys to

describe distribution and estimate abundance. Distance sampling (Buckland et al. 2001) and density surface modeling

(Miller et al. 2013) are 2 of the most commonly used approaches for estimating animal density and abundance. These

methods assume, by default, that animals will always be visible to the observers. If animals are not available to be seen

(e.g., because they are submerged, underground, or otherwise out of the observer's field of view; Laake et al. 1997), then

density and abundance will be underestimated. This problem of biased density and abundance estimates because of animal

availability is known as availability bias. Data obtained from biologgers include valuable information on behavior, which can

then be used to correct density and abundance estimates for availability bias. In a marine context, knowledge about the

average dive and surface duration, or the proportion of time at the surface, can aid in developing these corrections (Laake

et al. 1997, Barco et al. 2018, Sparks and DiMatteo 2020).

Patterns of availability and detectability are often oversimplified (i.e., assumed to be uniform across space and

time) because of data limitations, but unaccounted for heterogeneity in availability or detection can cause additional

bias in abundance estimates (Marsh and Sinclair 1989, Cubaynes et al. 2010, Innes et al. 2014, Fuentes et al. 2015,

Merrick and Koprowski 2017). Variation in availability to visual observers has been reported for many taxa: snakes

(Boback et al. 2020), ungulates (Samuel et al. 1987), dolphins (Sucunza et al. 2018), large whales (Jaquet et al. 2000,

Hodgson et al. 2017), sirenians (Edwards et al. 2007, Pollock et al. 2009), and sea turtles and tortoises (Thomson et al.

2012, 2013; Couturier et al. 2013). Even estimating the abundance in a relatively small geographic area can be

severely hampered by seasonal differences in the amount of time animals are available to be seen (Ganley et al. 2019).

Sea turtle dive‐surfacing behavior, like marine mammals, can be regulated by their need to breathe and by their

behavioral mode, life stage, and environmental factors (Mansfield et al. 2014, Patel et al. 2015); however, hard‐

shelled sea turtles are ectothermic and rely on external heat sources to maintain their internal body temperature

(Pough 1980). To some extent, turtles can produce heat through metabolism (Sato et al. 1995) and retain some of it

because of their large body mass (Paladino et al. 1990, Sato 2014) and blood‐flow patterns (Hochscheid et al. 2002).

But because of this need to thermoregulate, sea turtles may represent the complicated end of the spectrum for

marine vertebrates when it comes to estimating availability to visual observers.

The complex nature of sea turtle dive‐surfacing behavior can lead to results that are site‐specific, ambiguous,

and highly variable. For example, green turtles (Chelonia mydas) and loggerhead turtles (Caretta caretta) in Western

Australia (Thomson et al. 2012) have availability correction factors that are highly heterogeneous, with larger

corrections in colder, deeper waters. Other researchers have reported no significant correlation between sea

temperature and time spent near the surface for a pooled dataset from green turtles at multiple locations (Fuentes

et al. 2015). Similarly, a study that classified basking as extended surface times, exceeding 10minutes, was unable
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to describe any general temporal or spatial pattern because of the variability in individual turtle behavior

(Hochscheid et al. 2010). These diverse, and sometimes contradictory, results highlight the need for behavioral data

from the spatial and temporal areas of interest.

The United States Atlantic shelf region is home to potentially the world's largest population of loggerhead

turtles, known as the Northwest Atlantic Distinct Population Segment, which is protected by the United States

Endangered Species Act. Only 1 other management region (Northwest Indian Ocean) has comparable nesting

numbers (Willson et al. 2020), and these 2 regions combined account for 90% of global loggerhead nesting

(Witherington et al. 2009). Previous aerial surveys have estimated that between approximately 40,000 and 60,000

loggerheads seasonally inhabit the northwest Atlantic, particularly the Mid‐Atlantic Bight, and between approxi-

mately 500,000 and 1,000,000 inhabit the South Atlantic Bight (Northeast Fisheries Science Center [NEFSC] and

Southeast Fisheries Science Center [SEFSC] 2011). These may be underestimates, indicating the need for improved

calculations of availability bias, because stable isotope analysis and satellite telemetry distribution data indicate that

30–50% of loggerheads that nest and reside along the United States eastern seaboard seasonally forage within the

Mid‐Atlantic Bight (Ceriani et al. 2017). The abundance of loggerheads in shelf waters of the United States coupled

with protections mandated by the Endangered Species Act focuses attention on potential impacts of various marine

anthropogenic activities (e.g., fishing, offshore wind energy development). For these reasons, federal agencies are

interested in improved estimates of loggerhead distribution and abundance in this region.

We used data from animal‐borne data loggers to characterize the dive‐surfacing behavior of loggerhead turtles

in the northwest Atlantic by calculating estimates for and variation in 3 metrics that can be used to assess

availability bias: average dive duration, average surface duration, and the proportion of time at the surface. Because

of the heterogeneity in dive‐surfacing behavior observed in other sea turtle populations and our own observations

of loggerheads, we expected that variability in the dive‐surfacing behavior of loggerheads in the Northwest Atlantic

population would be appreciable and at least partially described by spatial and temporal components.

STUDY AREA

The study area ranged from Atlantic Canada to Florida, USA, and extended from the coastline to roughly 200

nautical miles (~370 km) from shore, covering 1,195,017 km2 of neritic and oceanic environments (Figure 1).

Loggerhead turtles undergo extensive seasonal migrations, with highest densities of tracks from tagged individuals

typically occurring along the continental shelf (Winton et al. 2018). These more densely populated regions roughly

correspond to the Northeast and Southeast Continental Shelf Large Marine Ecosystems (LMEs). Both LMEs are

characterized by temperate climates and moderate to high productivity, and support a wide variety of commercial

fisheries and protected species (Aquarone 2009, Aquarone and Adams 2009).

METHODS

Data

We tagged loggerhead turtles between 2009 and 2018 with Sea Mammal Research Unit (SMRU) and Wildlife

Computer (WICO) satellite relay data loggers (SRDLs) under permits issued by the National Marine Fisheries Service

following standard protocols detailed elsewhere (Patel et al. 2018). To avoid errant behavior by loggerhead turtles

post‐release, we excluded transmitted records occurring within the first 24 hours of tag deployment from analysis.

The SMRU SRDLs recorded average dive and surface duration and proportion of time at the surface. The tags

calculated the average dive duration from all individual dive‐cycle records that ended in a 4‐ or 6‐hour interval, with

only a sample of those summarized records being transmitted by the tag and successfully received by the satellite.
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Individual dive cycles were programmed to start when the SMRU SRDLs were wet and >1.5m deep for 20 seconds and

end when dry or <1.5m deep. We then calculated the average surface duration as the amount of time not spent in a

dive divided by the number of dives that occurred within a 4‐ or 6‐hour interval (Table 1; Figure 2). TheWICO SRDLs

recorded proportion of time at the surface, and other predetermined depth bins, over 4‐hour intervals with a 24‐hour

on and 72‐hour off transmission duty cycle. Although, data collection by the WICO tags occurred continuously. To

align with the SMRU SRDL definition of a dive, we considered the proportion of time spent at depths ≥2m as the dive

time (Table 1). In summary, only the SMRU SRDLs recorded information on dive and surface duration, whereas both

the SMRU and WICO SRDLs recorded information on the proportion of time spent at the surface.

We filtered the SRDL data to remove potentially erroneous records and to exclude intervals that occurred primarily at

night (i.e., we kept records if ≥75% of the interval time occurred during the day). We used only daytime records because

these coincided with aerial surveys. We then linked values for average duration and proportion of time at the surface to

hourly interpolated locations from tracks reconstructed using continuous time correlated random walk movement models

(Winton et al. 2018). To provide a single spatial coordinate per datum, we averaged the hourly interpolated locations that

occurred within an interval. Prior to fitting the continuous time correlated random walk, we removed approximate

F IGURE 1 Track lines of the 245 loggerhead turtles tagged with satellite relay data loggers (SMRU = Sea
Mammal Research Unit, WICO =Wildlife Computers), 2009–2018, within the study area off the east coast of North
America (black outline), number of satellite‐tagged individuals summarized over the prediction grid with a cell size of
20 km × 20 km, and histograms of average dive (~3% of values were >4 and are not shown) or surface duration (~1%
of values were >4 and are not shown) and proportion of time at the surface across individuals.
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locations if they duplicated a date‐time stamp, had poor location quality, plotted on land, or were flagged as improbable

using a speed filter (i.e., max. swimming speed of 5 km/hr). We did not interpolate hourly locations from reconstructed

tracks over time gaps >3 days. We then re‐projected all spatial coordinates into an oblique Mercator projection with a

central line that roughly coincided with the long axis of the eastern United States.

For a single retrieved SMRU tag, we compared the summarized dive and surface durations to averaged

time‐depth‐recording (TDR) values to verify the method used to calculate average surface duration was

TABLE 1 Description of pertinent variables recorded by the satellite relay data loggers (SRDLs). The
transmitted column flags variables that were calculated by the tags and then transmitted via satellite (yes) or were
calculated by hand after the fact (no). We deployed 245 SRDLs on loggerhead turtles off the east coast of North
America, 2009–2018.

Variable Description Transmitted

Dive duration Calculated by the tag as the amount of time between the start of a dive
(when the depth remains >1.5 m for 20 seconds) and the end of a
dive (when the tag is dry or the depth <1.5 m).

No

Average dive duration Calculated by the tag as the average dive duration for dives that ended in

the interval period, regardless of which interval period they began in.

Yes

Dive time Calculated by the tag as the proportion of time spent in a dive during the
interval period.

Yes

Number of dives Calculated by the tag as the number of dives that ended in the interval
period.

Yes

Average surface duration Calculated post hoc as (interval period × (1 − dive time) / number of dives). No

Proportion of time at the
surface

Calculated by the tag as the proportion of time spent at the surface
during the interval period.

Yes

F IGURE 2 Example of how time and depth data were recorded by the satellite relay data loggers (SRDLs) and
processed into dive and surface durations. The thin black line shows time depth data, which has been somewhat
manipulated to better illustrate the types of dive and surface behavior that may occur within an interval period. The
bright blue line shows dives that ended in this interval period. The orange line shows dives that ended in the next interval
period. We deployed 245 SRDLs on loggerhead turtles between 2009 and 2018 off the east coast of North America.

LOGGERHEAD TURTLE AVAILABILITY BIAS | 5 of 20



reasonable. Comparison between the summarized SRDL and averaged TDR values (Appendix A) suggested

the 2 were reasonably similar (Figure A1).

We used a stochastic partial differential equation (SPDE) approach to construct the spatiotemporal

regression models of average dive or surface duration and proportion of time at the surface (Appendix B;

Lindgren et al. 2011). We chose the SPDE approach to provide smooth, spatially explicit maps of the

3 availability bias metrics (average dive, surface duration, and proportion of time at the surface) that can be

used to broadly describe dive and surface behavior, and to develop correction factors for abundance esti-

mates. In this way, we properly accounted for the individual, spatial, and temporal variability and auto-

correlation inherent in georeferenced dive‐surfacing behavior data generated by the animal‐borne data

loggers (NEFSC and SEFSC 2011). The number of SRDLs deployed in any given year was not sufficient to

explore interannual trends (Table 2), so we pooled data across years to focus on differences among months.

We conducted data wrangling (Pebesma 2018, Wickham et al. 2019, Hijmans 2020), analyses (Kristensen

et al. 2016), and figures (Auguie and Antonov 2017, Nychka et al. 2017, South 2017, Wickham et al. 2019,

Wilke 2019, Wickham and Seidel 2020) using the statistical software R (R Core Team 2019).

Prediction surfaces

We placed predictions from the spatiotemporal regression models onto a 20‐km× 20‐km grid that spanned the

study area from Atlantic Canada to Florida with the same oblique Mercator projection as the re‐projected data. The

prediction surfaces were calculated as

y μ y

Duration

( ) =

Proportion

( ) =k l
τ μ

ν τ
,

+

1 + +

k l, 

where y( ) represents the expected value of the data for an average individual at a location (k) and month (l), µ is

the estimated mean, and ν and τ are estimated parameters that define the beta‐inflated distribution (Appendix B).

TABLE 2 Number of satellite relay data loggers deployed annually on loggerhead turtles in the South Atlantic
Bight, Mid‐Atlantic Bight, and Georges Bank by the Coonamessett Farm Foundation (CFF), Northeast Fisheries Science
Center (NEFSC), and Southeast Fisheries Science Center (SEFSC) off the east coast of North America, 2009–2018.

Year CFF NEFSC SEFSC Total

2009 2 2

2010 14 30 44

2011 10 16 26

2012 15 15 30

2013 10 6 29 45

2014 13 5 18

2015 8 2 10

2016 5 16 21

2017 14 9 23

2018 10 16 26

Total 87 99 59 245
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We obtained the standard errors of the predicted values using the delta method (Kristensen et al. 2016). We then

masked the prediction surfaces and removed grid cells from the prediction surfaces by buffering the averaged

locations by the maximum estimated spatial decorrelation range, which represents the distance beyond which the

observations are essentially uncorrelated. We masked the prediction surfaces to avoid interpolated values outside

of the seasonal range boundaries for loggerhead turtles in the northwest Atlantic.

We further summarized prediction surfaces at 2 spatial scales to develop time series of monthly quantiles (i.e.,

0.025, 0.50 [median], and 0.975) for the 3 availability bias metrics to describe seasonal patterns. We selected the

spatial scales to summarize the continental shelf and 3 smaller areas along the United States Atlantic coast. The

3 smaller areas represent neritic regions off the coasts of the Carolinas, Chesapeake Bay, and the New York Bight

(Figure 3). We focused on the continental shelf because this area had the most data and the most scientific and

management interest. The majority of aerial survey effort occurs on the shelf, with the 3 smaller areas representing

regions that are heavily managed for commercial fishing and ocean and wind energy development.

RESULTS

We deployed SRDLs on 245 loggerhead turtles in the South‐Atlantic Bight, Mid‐Atlantic Bight, or Georges

Bank between 2009 and 2018 in partnership with the Coonamessett Farm Foundation, Northeast Fisheries

Science Center, and Southeast Fisheries Science Center (Table 2; Figures S1–S2, available in Supporting

F IGURE 3 Regions used to summarize predictions of the 3 availability bias metrics (average dive duration,
average surface duration, and proportion of time at the surface) using quantiles. We generated predictions from
spatiotemporal regression models using data from up to 245 satellite‐tagged loggerhead turtles collected between
2009 and 2018 off the east coast of North America.
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Information). Loggerhead turtle sizes (standard carapace lengths) ranged between 51 cm and 100 cm

(x̄ = 72 ± 9 cm [SD]).

All 3 spatiotemporal regression models successfully converged, with positive definite Hessian matrices and

maximum gradient components <0.001. Residual diagnostic plots also indicated that the spatiotemporal regression

models fitted the data reasonably well. The ability of our developed spatiotemporal regression models to char-

acterize observed behavior of tagged loggerhead turtles was supported by high Spearman rank correlation coef-

ficients, which ranged from 0.59 to 0.74, between the observed and fitted values for the 3 models.

All 3 availability bias metrics displayed considerable individual, spatial, and spatiotemporal variation in pre-

dictions of dive‐surfacing behavior for loggerhead turtles inhabiting the northwest Atlantic. The large values for the

marginal spatial standard deviations demonstrated pronounced spatial variation for all 3 of the availability bias

metrics (Table 3; Figure 4). Spatiotemporal variation was also evident (Table 3), indicating seasonal variation in the

spatial distributions (Figures S3–S8, available in Supporting Information). Behavioral differences were apparent

between periods of overwintering and summer foraging (Figure 5).

Average dive duration

The majority of summarized dive durations (70%) were <30minutes long, with a maximum of 13.5 hours (Figure 1).

Overall, the average dive duration was estimated to be approximately 14.5 minutes ± 1.36minutes (SE; Table 3),

with noticeable individual differences in dive time with estimates that ranged between 6.53 and 31.07minutes.

TABLE 3 Parameter estimates from spatiotemporal regression models fitted to behavior data obtained from up
to 245 satellite relay data loggers deployed on loggerhead turtles between 2009 and 2018 off the east coast of
North America.

Parameter Observed Estimate SE

Average dive duration (hr)

Intercept (β )0 —overall average 0.2422 0.0226

Spatial decorrelation range 117 km 10 km

Marginal spatial standard deviation 0.6310 0.0650

Marginal spatiotemporal standard deviation 0.9665 0.0394

Average surface duration (hr)

Intercept (β )0 —overall average 0.2524 0.0461

Spatial decorrelation range 190 km 17 km

Marginal spatial standard deviation 1.0960 0.0875

Marginal spatiotemporal standard deviation 0.7877 0.0451

Proportion of time at the surface

Probability of 0 (p0 ) 0.0033 0.0033 0.0002

Probability of 1 (p1 ) 0.0020 0.0020 0.0002

Probability of (0, 1) (p2 ) 0.9948 0.9948 0.0003

Spatial decorrelation range 206 km 18 km

Marginal spatial standard deviation 1.0417 0.0793

Marginal spatiotemporal standard deviation 0.7245 0.0407
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Spatially, the predicted average dive durations were higher inshore, compared to offshore areas defined by bottom

depths >200m (Figure 4); although, this pattern was less apparent north of Cape Hatteras, North Carolina. The longest

dives appeared to be concentrated along the continental shelf near the coasts of North and South Carolina (Figures 3 and

4). Additionally, longer dives were predicted farther south in January, relative to the shorter dives in August along the Mid‐

Atlantic Bight (Figure 5). We also estimated significantly greater spatiotemporal than spatial variation for the estimated

average dive durations, with a relative increase in the marginal standard deviations of roughly 1.5 times (Table 3).

Seasonally, along the continental shelf, the average dive duration was highest during October–May, relative to

the warmer summer months of June–September (Figure 6). More variability in average dive duration occurred from

October–May, with sharp declines in this pattern during summer (Figure 6). The longest dives occurred farther

south in the Carolinas and Chesapeake Bay regions, following a similar seasonal pattern as demonstrated across the

entire continental shelf (Figure 6). In the NewYork Bight area, average dive duration was relatively more stable with

consistently shorter dives throughout the year, again with slightly longer dives from October–May (Figure 6).

Average surface duration

The majority of summarized surface durations (79%) were <30 minutes long, with a maximum of 6 hours

(Figure 1). Overall, the average surface duration was estimated to be approximately 15.1 ± 2.77 minutes (SE;

F IGURE 4 Estimates of the spatial random effects and standard errors on the loge scale for the spatiotemporal
regression models of average dive or surface duration and the logit scale for the spatiotemporal regression model of
proportion of time at the surface using data from up to 245 satellite‐tagged loggerhead turtles collected off the east
coast of North America, 2009–2018. The black, dashed line denotes the 200‐m isobath.

LOGGERHEAD TURTLE AVAILABILITY BIAS | 9 of 20



Table 3), with noticeable individual differences in surface time with estimates that ranged between

4.65–65.85 minutes.

Spatially, the predicted average surface durations were higher offshore, compared to inshore areas defined by

bottom depths <200m (Figure 4). Although, this pattern was less apparent north of Cape Hatteras. At least for shelf

waters, there was a strong latitudinal gradient in the predicted average surface durations (Figure 4). We also

estimated significantly greater spatial than spatiotemporal variation for the predictions, with a relative increase in

the marginal standard deviations of roughly 1.4 times (Table 3). In contrast to the average dive duration, there was

less of an apparent trend in the predictions between January and August (beyond the inshore‐offshore differences

already mentioned; Figure 5).

Seasonally, along the continental shelf, the average surface duration was highest during the warmer late spring

and summer months of May–September, relative to the months of October–April (Figure 6). Although, this seasonal

pattern was less pronounced than that of the average dive duration given the more consistent variability across

months (Figures S5–S6). Even with the more muted seasonal pattern, the latitudinal gradient across regions was still

apparent. Generally, the longest surfacings occurred farther north in the New York Bight region, with shorter

surface durations near the Chesapeake Bay and shelf waters off the Carolinas (Figure 6).

F IGURE 5 Predictions and standard errors for the average dive duration, average surface duration, and average
proportion of time at the surface from the spatiotemporal regression models using data from up to 245
satellite‐tagged loggerhead turtles off the east coast of North America, January and August, 2009–2018. The white,
dashed line denotes the 200‐m isobath. The color scale was exceeded in January for predictions of average dive
duration, with roughly 2% of values being >2 hours.
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Proportion of time at the surface

The average proportion of time at the surface was estimated to be approximately 0.50 (95% CI = 0.41–0.59),

with noticeable individual differences in dive‐surfacing behavior with estimates that ranged between

0.25 and 0.68. Roughly 58% of the observed proportions of time at the surface were ≤0.50, with a

maximum value of 1.0 indicating that a turtle was at the surface 100% of the time over an interval period

(Figure 1).

Spatially, the predicted proportions of time at the surface were higher offshore, compared to inshore areas

defined by bottom depths <200m (Figure 4); although, this pattern was less apparent north of Cape Hatteras. We

also estimated significantly greater spatial than spatiotemporal variation for the predictions, with a relative increase

in the marginal standard deviations of roughly 1.4 times (Table 3).

In January, for shelf waters, turtles spent less time at the surface compared to August, which was especially

pronounced for parts of the mid‐Atlantic (Figure 5). There was also a more uneven spatial distribution for areas

north of Cape Hatteras in August, possibly a reflection of low sample size in the far northeast fringes of the range

(Figure 5).

Seasonally, along the continental shelf, the proportion of time at the surface was highest during the warmer late

spring and summer months of May–September, relative to the months of October–April (Figure 6). There was also

more consistency in variation across months, similar to the average surface duration (Figures S7–S8). The seasonal

pattern demonstrated across the entire continental shelf (Figure 6) was also reflected in the Carolinas, Chesapeake

Bay, and New York Bight regions to varying degrees (Figure 6). The farther north the region, the more distinct the

dive‐surfacing behavior was for the summer months relative to the rest of the year, along with more time spent at

the surface overall (Figure 6).

F IGURE 6 Quantiles (i.e., black dots = 0.5 quantile [median], with the shaded areas representing the 0.025 and
0.975 quantiles) for predictions of average dive duration, average surface duration, and average proportion of time
at the surface from the spatiotemporal regression models using data from up to 245 satellite‐tagged loggerhead
turtles on the Continental Shelf, New York Bight, Chesapeake Bay, and the Carolinas regions off the east coast of
North America. We omitted quantiles if we did not have data for ≥75% of the cells in a region and month.
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DISCUSSION

In some times and areas, the diving and surfacing behavior of loggerhead turtles can make it difficult to detect their

presence. During winter in coastal regions near the Chesapeake Bay and in the shelf waters off North and South

Carolina, the median predicted value for the duration of a loggerhead turtle's dive was close to or exceeded 1 hour

(Figure 6). Short surface durations and small proportions of time at the surface were estimated to occur in the South

Atlantic Bight during winter (Figure 5). Similar to other reptiles, the cryptic behavior of loggerhead turtles means

that it may not be appropriate to infer species absence from an absence of sightings (Kéry 2002, Hartel et al. 2008).

This behavior can leave loggerhead turtles vulnerable to risks associated with marine use and development such as

vessel strikes (Foley et al. 2019), underwater explosions (Keevin and Hempen 1997), and dredging (Ramirez et al.

2017) because they are not readily observed at the surface.

A subset of the dives, particularly in winter, were unusually long and are consistent with brumation. This

pattern of longer dives in winter is compatible with previous studies (Hochscheid et al. 2005, Arendt et al. 2012)

and with the concept of unique overwintering behavior (Braun McNeill et al. 2020). Our maximum observed

average dive duration of 13.5 hours, and 108 other average dives (≤1% of total average dives), exceeded the

previously reported longest dive (i.e., 8 hr; Hochscheid et al. 2007). We caution, however, that the data examined

here have been summarized and relayed via satellite; therefore, there is more uncertainty in this dataset compared

to higher resolution data from archival time‐depth recorders. These very long dives complicate traditional surveys

and mitigation methods that rely on observing turtles at the surface.

The satellite‐tagged loggerhead turtles spent a significant amount of time at‐depth and out of view of visual

observers. Loggerhead turtles spent roughly 51% of an average dive‐surfacing cycle at the surface, with the

estimated average dive and surface durations being approximately equal (Table 3). This was further corroborated by

an estimate of 50% time being spent at the surface for an average individual, as described by the zero‐one inflated

beta regression (Table 3). Both results align well with similar values reported for availability of telemetered log-

gerhead turtles near the Chesapeake Bay (Barco et al. 2018). Barco et al. (2018) reported that telemetered turtles in

the deep, ocean stratum (the stratum that most closely matched our study) during the spring and summer months

spent roughly 54% and 61% of their time at the surface, respectively. Loggerhead turtles in that study also exhibited

a strong seasonal signal in surface time. This conclusion was echoed in our results, with strong inshore‐offshore and

seasonal gradients in dive‐surfacing behavior.

Visual availability is important for translating surface abundance into total water‐column abundance and for pro-

pagating uncertainty in dive‐surfacing behavior. In fitting the average dive and surface duration models, we did not

consider the within‐interval variability that is averaged out in the summary statistics transmitted by the SRDLs. We used

those summary statistics to fit the models, which then provided predictions over the gridded study area (Figure 5).

Uncertainty in the predictions of average dive and surface duration, then, will likely be underestimated to some degree,

but by how much is currently unknown. An avenue for further research lies in propagating the within‐interval variation

through to the predictions and exploring individual dive profiles as opposed to the binned data analyzed here.

Line‐transect surveys often explicitly address biases associated with variation in detectability (such as

through mark‐resight approaches using double observers), but variation in availability has the potential to

affect abundance estimates to an even larger degree. For example, preliminary estimates of total loggerhead

turtle abundance in the northwest Atlantic differed by about an order of magnitude (NEFSC and SEFSC 2011)

when availability was explicitly considered. This difference was largely attributed to the developed correction

factors for availability bias that varied substantially between spatial strata used in the survey design (NEFSC

and SEFSC 2011). The spatial strata may have been too coarse to resolve representative correction factors

for availability, especially given the identified gradients in behavior among the telemetered turtles from this

study. A key conclusion of the NEFSC and SEFSC (2011) study was that further analysis was required to

resolve the most appropriate correction factors and their uncertainty, along with the collection of additional

data to better characterize dive‐surfacing behavior over the northwest Atlantic.
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Heterogeneity in availability is not uncommon for marine animals, and has been noted for mammals (Marsh and

Sinclair 1989, Pollock et al. 2009), sharks (Nykänen et al. 2018), and particularly sea turtles (Thomson et al. 2012,

2013, Barco et al. 2018). Prior researchers reported differences in surface time for sea turtles based on demo-

graphics (Cardona et al. 2005), environmental gradients (Thomson et al. 2013, Barco et al. 2018), and space and

time (Barco et al. 2018). This suggests applying uniform correction factors for availability may lead to biased

estimates of abundance, with the degree of bias being study‐dependent. For sea turtles that spend a variable

amount of time underwater, this makes refining availability bias correction factors to appropriate spatiotemporal

scales very important (Barco et al. 2018).

The apparent heterogeneity and patchiness in availability of loggerhead turtles (Figures 4 and 5) may be partially

related to the lack of data in certain times and areas (Figure 1). Fewer satellite‐tagged loggerhead turtles ventured off the

continental shelf during the study period, resulting in varying sample sizes for the number of tagged individuals present

across the region in any given month (Figure 1, S2). The inclusion of individual, spatial, and spatiotemporal random effects

can help alleviate some of these concerns, as the modeled interdependence in the data can inform areas with data gaps or

deficiencies. In areas with data from only a few tagged individuals, the possibility remains that the behavior of those

individuals strongly influenced the prediction surfaces. Prediction uncertainties, to some extent, will reflect this low sample

size through higher standard error estimates but will be unable to clarify to what extent the behavior from a few tagged

individuals is representative of the larger population.

The underlying behavior of cryptic and elusive animals is important for conservation beyond effective monitoring

programs supported by surveys. An understanding of where and when protected species are likely to occur can assist with

efforts to reduce interactions with fisheries (Howell et al. 2008), prevent fatal collisions with transiting vessels (Crum et al.

2019), and mitigate impacts of military readiness activities (NOAA 2020). Beyond these examples, several emerging issues

(e.g., climate change, aquaculture, power generation) in the marine environment will also require a better understanding of

habitat use and behavior to accurately characterize and potentially quantify mortality and morbidity risk imposed on

marine wildlife (Bolten et al. 2019).

Animal‐borne data loggers allow for data collection of dive‐surfacing behavior over extended periods of

time and over important environmental gradients and habitats that are essential for delineating availability of

animals to survey platforms. Future researchers can add value by investigating the mechanistic process

underlying the patterns we observed here. Knowing more about the mechanistic processes may provide

insights into future patterns with expected changes in climate (Santidrián Tomillo and Spotila 2020) and

energy development scenarios (Bailey et al. 2014, which urged mechanistic studies linked to wind devel-

opment). Like other air‐breathing marine animals, patterns of sea turtle availability to visual observers may be

related to a variety of predictive or explanatory variables including those related to migration, forage, and

abiotic factors that affect sea turtle physiology (Crawford et al. 2020).

MANAGEMENT IMPLICATIONS

Accounting for potential biases in aerial and shipboard line‐transect surveys is important for the creation of

accurate and precise abundance estimates used to evaluate population recovery of threatened and en-

dangered marine species. A notable potential bias is availability, and when availability to visual surveys is

heterogeneous in time and space, applying uniform correction factors may lead to biased estimates of

abundance. Our current analysis represents an improvement to practices in surface density modeling where

uniform correction factors are applied over broadly defined strata or where estimates of availability from

external studies are applied to new regions. If the variability we observed in loggerhead turtle behavior is

indicative of variability in the behavior of other species, caution should be exercised when considering the

use of highly aggregated or unrepresentative data to estimate availability in other marine or terrestrial

animals. We recommend that our estimated availability bias metrics for loggerhead turtles be integrated with
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line‐transect survey data to improve population estimates that can support decisions on threat assessments,

research priorities, and recovery actions to ensure persistence of this important northwest Atlantic sub-

population. Further research comparing modeling approaches that estimate availability of loggerhead turtles

to visual survey platforms would also be beneficial, and may help to explore the heterogeneity and patchiness

found in the prediction surfaces of the availability metrics and the potential implications of that patchy

variability on resulting density models. We also recommend collecting additional data on loggerhead turtle

behavior using animal‐borne data loggers to help resolve availability in times and areas where data were

sparse, particularly in offshore waters deeper than 200 m and east of 72°W.
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APPENDIX A: COMPARISON BETWEEN TRANSMITTED AND HAND‐CALCULATED

DURATION STATISTICS FOR A SINGLE TAG

The SMRU SRDLs summarized dive or surface duration over 4‐ or 6‐hour intervals for 186 loggerhead turtles tagged

between 2009 and 2018 off the east coast of North America. For a single tag, we compared the transmitted summary

statistics for dive and surface duration to those manually calculated from the retrieved TDR. To the extent practicable, we

processed the TDR in a manner similar to that of the information transmitted by the SRDL during deployment. Overall,

the summarized dive or surface duration had high correspondence between the transmitted and manually calculated

numbers, as shown by the high r2 values (Figure A1). Any disagreement between the 2 is likely a result of misalignment

when linking numbers by date and time, as transmitted durations are binned by 4‐ or 6‐hour intervals.

F IGURE A1 Comparison between summarized dive or surface duration (seconds) transmitted by the satellite
relay data loggers and calculated from the time‐depth‐recording for a single tag deployed on a loggerhead turtle off
the east coast of North America in 2013. The red line denotes 1:1 agreement. Numbers were hexagonally binned
with color indicating count.
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APPENDIX B: SPATIOTEMPORAL MODELS

There are multiple approaches available to model the autocorrelation inherent to the satellite telemetry data used in this

study. Two commonly cited approaches for modeling autocorrelated data are generalized linear mixed models (GLMMs)

and generalized additive models (GAMs; Hefley et al. 2017). The GLMM framework accounts for autocorrelation by

including random effects terms, modeling the latent spatial and spatiotemporal structures through specification of the

covariance matrices that partially define the random effects distributions (Hefley et al. 2017). On the other hand, GAMs

tend to model the autocorrelation as 1‐dimensional or 2‐dimensional basis‐penalty splines specified within the definition

of the mean structure (Hefley et al. 2017). The spatiotemporal regression models developed in this study are GLMMs or

like GLMMs, in the case of the zero‐one inflated beta regression (Douma andWeedon 2019), that make use of the SPDE

approach to include and estimate the latent spatial and spatiotemporal random effects (Lindgren et al. 2011). Recent

work by Miller et al. (2020) reported that the SPDE approach can be interpreted as a basis‐penalty smoother, suggesting

that the SPDE approach and more commonly applied GAMs (Roberts et al. 2016) have conceptual linkages. In this sense,

we might anticipate that the SPDE and GAM approaches would be similar, although the degree of similarity would

depend on how the basis‐penalty smooths are defined (Hefley et al. 2017, Miller et al. 2020).

Detailed description of the spatiotemporal regression models

We constructed the spatiotemporal regression models using a SPDE approach. Lindgren et al. (2011) first introduced

the SPDE approach and provides further explanation on the underlying mechanics, while Miller et al. (2020) provide a

useful interpretation of the SPDE approach as a smoothing penalty allowing practitioners to better understand, adapt,

and implement these types of approaches in disciplines that are familiar with basis‐penalty smoothers.

We decided not to include environmental covariates in our spatiotemporal regression models for several reasons. First,

we wished to avoid concerns about dependence on covariate values in subsequent analyses that may use our data

products (i.e., avoid induced circular reasoning; Paciorek et al. 2016). Second, we wished to avoid the additional challenges

of covariate selection and uncovering the appropriate functional forms of selected covariate effects, which is not trivial and

requires further research. Finally, as has been noted elsewhere, spurious correlations can result between environmental

predictors and the response variable when there is spatial autocorrelation (Warren et al. 2020). As a result, we decided to

focus on the spatial and temporal components in this analysis and left the question of environmental and non‐

environmental predictors for future studies.

Average dive and surface durations

To estimate the average dive and surface durations, we assumed the summarized durations followed a Gamma

distribution with density

y α β
β Γ α

y eGamma( | , ) =
1

( )
,

α
α y β−1 − /

where Γ is the gamma function, α is the shape parameter, and β is the scale parameter. We assumed a Gamma

distribution because the summarized durations could only take on values greater than zero. More formally,
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where y‾ is the average dive or surface duration for summarized record i with sample size n from individual j at

location k during month l. We modeled the mean response as:

μ β b s E s= exp( + + Ω( ) + ( )),j k l j k l k, , 0
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where β0 is the intercept, bj is the individual random effect, and sk is the spatial coordinate.

Proportion of time at the surface

To estimate the average proportion of time at the surface, we assumed the proportions followed a beta‐inflated

distribution with density (Rigby and Stasinopoulos 2010)
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where B ( ) is the Beta function, α and β are shape parameters, μ α α β= /( + ), σ α β= ( + + 1)−1/2, p0 is the probability

of 0, p1 is the probability of 1, p p p= 1 − −2 0 1 (i.e., probability between 0 and 1), ν p p= /0 2, and τ p p= /1 2. We

assumed a beta‐inflated distribution because the proportions arose from continuous time and included values of 0

and 1. More formally,

y μ σ ν τBEINF( , , , ),i j k l j k l, , , , ,

where y is the fraction of time spent at the surface for record i from individual j at location k during month l. We

then modeled the μ as:

μ β b s E s= logit ( + + Ω( ) + ( )),j k l j k l k, ,
−1

0

where β0 is the intercept, bj is the individual random effect, and sk is the spatial coordinate.

For both regression models, theΩ represents a continuous spatial process and the E represents changes to that

continuous spatial process (Ω) over time (i.e., months). If it is assumed that bothΩ and E follow multivariate normal

distributions with zero mean vectors and Matèrn covariance functions (i.e., Gaussian random fields [GRFs] sampled

at finite points), then the continuous spatial processes can be approximated as the weak solutions to SPDEs that

produce Markovian GRFs (GMRFs; Lindgren et al. 2011). In brief, the SPDE approximation of a GRF, with some

relatively non‐restrictive assumptions, is a GMRF defined as a weighted sum of piecewise linear basis functions

over a triangulated mesh with the same spatial domain as the continuous spatial process (Lindgren et al. 2011). The

advantage of using a GMRF is that it is computationally more efficient and allows for the use of sparse matrix

operations.

While each observed location could be specified as a node in the triangulated mesh, we selected a

reduced number of locations referred to as knots in a predictive process approach (Banerjee et al. 2008). We

maximized the number of knots before encountering computational difficulties (Thorson 2019), which

translated into roughly 600 knots that were regularly spaced inside an α‐hull that spanned the domain of the

averaged spatial coordinates (Pateiro‐Lopez and Rodriguez‐Casal 2019, Thorson 2019). We then used the R‐

INLA software to create the triangulated mesh and the sparse matrices needed for the SPDE approximation

(Rue et al. 2009). We specified the Matèrn functions for the spatial and spatiotemporal processes with fixed

smoothness parameters and a shared scale parameter, κ (Winton et al. 2018). The spatial decorrelation range

can then be approximated using 8 /κ , where κ is an estimated parameter (Lindgren et al. 2011). We fitted the

spatiotemporal regressions to the data using the statistical software R (R Core Team 2019) and Template

Model Builder (TMB; Kristensen et al. 2016). We explored model performance using residual diagnostic plots.
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